鋼製ダンパーを用いた伝統木造軸組建物における傾斜復元力特性の改善

正会員	\bigcirc	小出	孟*
同		藤川	大輝 **
同		井戸I	田秀樹 ***

伝統木造軸組 柱脚 復元力特性 鋼製ダンパー

1. 序論

限界耐力計算では、各耐震要素ごとに耐力を算出し、そ れらを足し合わせることで、建物の耐震性能を評価してい る。図1に示す一般的な伝統木造軸組の各耐震要素の復元 力特性を図2に示す¹¹。寺社や神社などに見られる伝統木 造軸組で用いられる柱径は300mm 程で木造軸組住宅と比 較すると太径であり、柱の剛体回転を許す場合であれば、 傾いたときに元に戻ろうとする傾斜復元力を考慮すること ができる²¹。しかし、その傾斜復元力は損傷限界を過ぎる と減少しはじめ、図3に示すような幾何学的条件より柱径 以上の層間変形では負に転じ*P-A*効果を進めることにな る。また繰返し変形を受ける場合、逆行型の履歴のため履 歴によるエネルギーの吸収が見込めない。

そこで、本研究では、傾斜復元力を有する伝統木造軸組 の柱に対し、柱脚部に取り付けるエネルギー吸収デバイス を提案し、実験に基づいてその傾斜復元力の改善効果を検 証する。

2. エネルギー吸収デバイスの提案

石場立てである伝統構法の柱は図4に示す三次元的な回 転を伴うロッキング運動を示す。ゆえに、軸方向の自由度 のみを考慮した座屈拘束ブレース等のダンパーではこの ロッキング運動に追従できない。そこで鋼板をスリット状 に切り出した図5のような鋼製スリットダンパーを考案す る。このような鋼板に孔を開け孔の端部に応力を集中させ 塑性化を促し、塑性ひずみによるエネルギー吸収をさせる 履歴型のダンパーは一般的に壁などの層間変形を起こす箇 所で剪断型として用いられることが多い。今回のような挙 動を示す伝統木造軸組の柱脚部では、柱脚の側面と基礎に 固定することで、柱のロッキング挙動に追従しながら十分 にエネルギー吸収が可能であると考える。

また、この鋼製ダンパーは柱脚部への設置を想定してい るため、室内の意匠に影響しないことや、施工面での合理 性、損傷部の取り換えのみで済む復旧工事の合理化などが 期待できる。

3. 引張試験による鋼製ダンパーの性能検証

3.1 実験概要

試験体に用いた鋼材の材料特性を表1に、試験体一覧を 表2に示す。試験体は実在する柱脚金物と同等の荷重で先 にスリット部が塑性化するように部材寸法を決めた。一方 のスリット端部の塑性部が他方のスリット端部に及ぼす影

Improvement of tilt restoring force charactaristics in traditional wooden frame building using steel dampers

IDOTA Hideki, FUJIKAWA Daiki, KOIDE Hajime

響を確かめるため、ストラットの幅w、本数n以外に中心 軸のストラット間距離もパラメータにした。

載荷は万能試験機により単調載荷と変形角 1/120、1/60、 1/40、1/30、1/25、1/20、1/15、1/10(rad) に相当する変位 サイクルで正方向2回漸増繰返し載荷を行う。

3.2 実験結果·考察

図6に各試験体の繰返し・単調載荷試験の結果を示す。 横軸に各変位に相当する変形角 θを降伏変位 θ, で無次元 化したもの、縦軸に荷重 Pを全スリット端部が全塑性モー メントに到達したときの荷重 P_uで無次元化して整理した。

単調載荷では降伏後ひずみ硬化により耐力は上昇し、さ らにストラットが張力場に入ってからは急激に上昇する。 試験体2の最大耐力が低いのは、ストラット幅が大きくな ることで塑性断面係数が著しく大きくなり、全塑性耐力が 大きくなるためである。単調載荷の終局状態については試 験体1は繰返し載荷と同様図7-(a)のようにスリット端部 で破断したが、試験体1以外は、図7-(b)のように首部で 破断して一気に耐力を失った。これはストラットが張力場 となってから首の破断強度を上回ったためと考えられる。 試験体1、4を比較したときに繰り返しの履歴に差がみら れないことから、スリット間距離はスリット端部の塑性域 に比べて十分に離れていれば互いに干渉せず、繰返しの履 歴に関係しないことが分かった。

4. 復元力特性の改善

図8に各試験体の累積エネルギー吸収量の推移を示す。 大変形時まで安定してエネルギー吸収していることがわか る。図1の建物の柱65本のうち約2割に当たる12本の傾 斜復元力が発生する柱の両面に試験体1を取り付けたとす ると、図3の式中の下線部の復元力が加わる。図9より損 傷限界付近では、デバイスよりも柱の傾斜復元力が支配的 で、1/120rad以降耐力が下がり始める柱の傾斜復元力に対 し、デバイスの耐力上昇が起き柱自体の改善傾斜復元力は 図のように上昇傾向に改善される。図10に安全限界での 傾斜復元力の改善を示す。これより耐震性能の改善が期待 できることが分かった。

なお、本実験ではダンパーの面内方向の自由度を対象に 性能を確かめたが、実挙動では面外変形や接合部の変形も 想定される。また本デバイスを柱に対してどのようなバラ ンスで配置していくか、取り付けた際の建物全体に及ぼす 変形等に関する変化なども今後の課題として挙げられる。

5. 結論

1)ストラット間距離は塑性部がスリット端部に広がる範囲 に比べて十分に離れている形状であれば、耐力、エネル ギー吸収性能に影響はしないが、短すぎるとストラット の破断強度が首の破断強度を上回り首で破断する。

2)本研究で用いた試験体寸法のデバイスであれば、傾斜復

*	名古屋工業大学大学院工学専攻 博士前期課程
**	亀山建設(株) 修士(工学)
***	名古屋工業大学大学院社会工学専攻教授・工博

- * Graduate Student, Nagoya Institute of Tecnology
- ** Kameyama Construction, Mr. Eng
- *** Prof,Nagoya Institute of Technology,Dr.Eng.